Online or onsite, instructor-led live TinyML training courses demonstrate through interactive hands-on practice how to use machine learning on ultra-low-power devices to enable AI-driven applications in resource-constrained environments.
TinyML training is available as "online live training" or "onsite live training". Online live training (aka "remote live training") is carried out by way of an interactive, remote desktop. Berlin onsite live TinyML trainings can be carried out locally on customer premises or in NobleProg corporate training centers.
Our training facilities are located at Brückenstr. 4 in Berlin. Located on the fourth floor of a well-kept office building, our premises offer enough space for successful training courses in the heart of Berlin, within walking distance of the Jannowitzbrücke station.
Directions
The NobleProg training facilities are located in the heart of Berlin's Mitte district, just one underground station from Alexanderplatz, one of the centres of this vibrant city. By public transport you can reach us either by underground line U8 to Jannowitzbrücke station, followed by about 100 meters on foot.
Parking
Cars can be parked in the area along Brückenstr. and the nearby side streets, even if you may have to search for a moment. There is no charge for parking.
Local Amenities
Around the Rosenthaler Platz there are numerous small restaurants and shops where you can eat well and cheaply. There are also some hotels close by if you need accommodation for the training.
Our training facilities are located at Dianastrasse 46 in Potsdam-Babelsberg.
Our spacious training rooms are located directly opposite the Filmstudios Babelsberg and offer optimal training conditions for your needs.
Arrival
The NobleProg training facilities are conveniently located near the Medienstadt Babelsberg railway station,
and the A115 motorway is also easily accessible.
Parking
Parking is available in the surrounding streets around our training rooms.
Local Services
Potsdam offers numerous hotels and restaurants and is easily accessible thanks to its well-developed public transport system.
This instructor-led, live training in Berlin (online or onsite) is aimed at intermediate-level embedded engineers, IoT developers, and AI researchers who wish to implement TinyML techniques for AI-powered applications on energy-efficient hardware.
By the end of this training, participants will be able to:
Understand the fundamentals of TinyML and edge AI.
Deploy lightweight AI models on microcontrollers.
Optimize AI inference for low-power consumption.
Integrate TinyML with real-world IoT applications.
This instructor-led, live training in Berlin (online or onsite) is aimed at intermediate-level IoT developers, embedded engineers, and AI practitioners who wish to implement TinyML for predictive maintenance, anomaly detection, and smart sensor applications.
By the end of this training, participants will be able to:
Understand the fundamentals of TinyML and its applications in IoT.
Set up a TinyML development environment for IoT projects.
Develop and deploy ML models on low-power microcontrollers.
Implement predictive maintenance and anomaly detection using TinyML.
Optimize TinyML models for efficient power and memory usage.
This instructor-led, live training in Berlin (online or onsite) is aimed at intermediate-level embedded systems engineers and AI developers who wish to deploy machine learning models on microcontrollers using TensorFlow Lite and Edge Impulse.
By the end of this training, participants will be able to:
Understand the fundamentals of TinyML and its benefits for edge AI applications.
Set up a development environment for TinyML projects.
Train, optimize, and deploy AI models on low-power microcontrollers.
Use TensorFlow Lite and Edge Impulse to implement real-world TinyML applications.
Optimize AI models for power efficiency and memory constraints.
This instructor-led, live training in Berlin (online or onsite) is aimed at beginner-level engineers and data scientists who wish to understand TinyML fundamentals, explore its applications, and deploy AI models on microcontrollers.
By the end of this training, participants will be able to:
Understand the fundamentals of TinyML and its significance.
Deploy lightweight AI models on microcontrollers and edge devices.
Optimize and fine-tune machine learning models for low-power consumption.
Apply TinyML for real-world applications such as gesture recognition, anomaly detection, and audio processing.
Online TinyML training in Berlin, TinyML training courses in Berlin, Weekend TinyML courses in Berlin, Evening TinyML training in Berlin, TinyML instructor-led in Berlin, TinyML one on one training in Berlin, TinyML boot camp in Berlin, TinyML on-site in Berlin, TinyML instructor in Berlin, Evening TinyML courses in Berlin, Online TinyML training in Berlin, TinyML private courses in Berlin, TinyML coaching in Berlin, TinyML trainer in Berlin, Weekend TinyML training in Berlin, TinyML instructor-led in Berlin, TinyML classes in Berlin